Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.452
Filter
1.
Physiol Res ; 73(2): 285-294, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710059

ABSTRACT

This study aimed to determine whether electrical stimulation-based twitch exercise is effective in inhibiting the progression of immobilization-induced muscle fibrosis. 19 Wistar rats were randomly divided into a control group (n=6), an immobilization group (n=6; with immobilization only), and a Belt group (n=7; with immobilization and twitch exercise through the belt electrode device, beginning 2 weeks after immobilization). The bilateral soleus muscles were harvested after the experimental period. The right soleus muscles were used for histological analysis, and the left soleus muscles were used for biochemical and molecular biological analysis. As a result, in the picrosirius red images, the perimysium and endomysium were thicker in both the immobilization and Belt groups compared to the control group. However, the perimysium and endomysium thickening were suppressed in the Belt group. The hydroxyproline content and alpha-SMA, TGF-beta1, and HIF-1alpha mRNA expressions were significantly higher in the immobilization and belt groups than in the control group. These expressions were significantly lower in the Belt group than in the immobilization group. The capillary-to-myofiber ratio and the mRNA expressions of VEGF and PGC-1alpha were significantly lower in the immobilization and belt groups than in the control group, these were significantly higher in the Belt group than in the immobilization group. From these results, Electrical stimulation-based twitch exercise using the belt electrode device may prevent the progression of immobilization-induced muscle fibrosis caused by downregulating PGC-1alpha/VEGF pathway, we surmised that this intervention strategy might be effective against the progression of muscle contracture. Keywords: Immobilization, Skeletal muscle, Fibrosis, Electrical stimulation-based twitch exercise, PGC-1alpha/VEGF pathway.


Subject(s)
Down-Regulation , Fibrosis , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Rats, Wistar , Vascular Endothelial Growth Factor A , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Male , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Rats , Physical Conditioning, Animal/physiology , Signal Transduction/physiology , Electric Stimulation , Electric Stimulation Therapy/methods , Disease Progression , Muscular Diseases/metabolism , Muscular Diseases/pathology , Muscular Diseases/prevention & control , Muscular Diseases/etiology
2.
J Transl Med ; 22(1): 419, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702818

ABSTRACT

BACKGROUND: Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se. METHODS: VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis. RESULTS: VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis. CONCLUSIONS: VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.


Subject(s)
Apoptosis , Cell Proliferation , Glioblastoma , Mitochondria , Organelle Biogenesis , Vascular Endothelial Growth Factor Receptor-2 , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/drug therapy , Vascular Endothelial Growth Factor Receptor-2/metabolism , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
3.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727159

ABSTRACT

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Subject(s)
Glucosides , Lung Injury , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phenols , Sirtuin 1 , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Sirtuin 1/metabolism , Sirtuin 1/genetics , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice , Lung Injury/drug therapy , Particulate Matter/toxicity , Particulate Matter/adverse effects , Particle Size , Lung/drug effects , Lung/pathology , Lung/metabolism
4.
Sci Rep ; 14(1): 10143, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698042

ABSTRACT

Sirtuin3 (SIRT3), a mitochondrial deacetylase, has been shown to be involved in various kidney diseases. In this study, we aimed to clarify the role of SIRT3 in cyclosporine-induced nephrotoxicity and the associated mitochondrial dysfunction. Madin-Darby canine kidney (MDCK) cells were transfected with Flag-tagged SIRT3 for SIRT3 overexpression or SIRT3 siRNA for the inhibition of SIRT3. Subsequently, the cells were treated with cyclosporine A (CsA) or vehicle. Wild-type and SIRT3 knockout (KO) mice were randomly assigned to receive cyclosporine A or olive oil. Furthermore, SIRT3 activator, honokiol, was treated alongside CsA to wild type mice. Our results revealed that CsA treatment inhibited mitochondrial SIRT3 expression in MDCK cells. Inhibition of SIRT3 through siRNA transfection exacerbated apoptosis, impaired the expression of the AMP-activated protein kinase-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK-PGC1α) pathway, and worsened mitochondrial dysfunction induced by CsA treatment. Conversely, overexpression of SIRT3 through Flag-tagged SIRT3 transfection ameliorated apoptosis, increased the expression of mitochondrial superoxide dismutase 2, and restored the mitochondrial regulator pathway, AMPK-PGC1α. In SIRT3 KO mice, CsA treatment led to aggravated kidney dysfunction, increased kidney tubular injury, and accumulation of oxidative end products indicative of oxidative stress injury. Meanwhile, SIRT3 activation in vivo significantly mitigated these adverse effects, improving kidney function, reducing oxidative stress markers, and enhancing mitochondrial health following CsA treatment. Overall, our findings suggest that SIRT3 plays a protective role in alleviating mitochondrial dysfunction caused by CsA through the activation of the AMPK-PGC1α pathway, thereby preventing further kidney injury.


Subject(s)
Apoptosis , Cyclosporine , Mice, Knockout , Mitochondria , Oxidative Stress , Sirtuin 3 , Animals , Sirtuin 3/metabolism , Sirtuin 3/genetics , Cyclosporine/adverse effects , Cyclosporine/toxicity , Cyclosporine/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Dogs , Apoptosis/drug effects , Oxidative Stress/drug effects , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Madin Darby Canine Kidney Cells , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Kidney Diseases/genetics , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Mice, Inbred C57BL , Male , Signal Transduction/drug effects
5.
Article in English | MEDLINE | ID: mdl-38563090

ABSTRACT

In the brain, environmental changes, such as neuroinflammation, can induce senescence, characterized by the decreased proliferation of neurons and dendrites and synaptic and vascular damage, resulting in cognitive decline. Senescence promotes neuroinflammatory disorders by senescence-associated secretory phenotypes and reactive oxygen species. In human brain microvascular endothelial cells (HBMVECs), we demonstrate that chronological aging and irradiation increase death-associated protein kinase 3 (DAPK3) expression. To confirm the role of DAPK3 in HBMVEC senescence, we disrupted DAPK3 activity using small interfering RNA (siRNA) or a dominant-negative mutant (DAPK3-P216S), which reduced cellular senescence phenotypes, as assessed by changes in tube formation, senescence-associated beta-galactosidase activity, and cell proliferation. In endothelial cells, DAPK3 promotes cellular senescence by regulating the phosphorylation and inactivation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) via the protein kinase B pathway, resulting in the decreased expression of mitochondrial metabolism-associated genes, such as ATP5G1, BDNF, and COX5A. Our studies show that DAPK3 is involved in cellular senescence and PGC1α regulation, suggesting that DAPK3 regulation may be important for treating aging-related brain diseases or the response to radiation therapy.


Subject(s)
Cellular Senescence , Endothelial Cells , Humans , Endothelial Cells/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Cellular Senescence/physiology , Cell Proliferation/genetics , Brain/metabolism , RNA, Small Interfering/metabolism , Death-Associated Protein Kinases/genetics , Death-Associated Protein Kinases/metabolism
6.
PLoS One ; 19(4): e0301036, 2024.
Article in English | MEDLINE | ID: mdl-38625956

ABSTRACT

PURPOSE: This study aims to investigate the protective mechanism of dihydromyricetin PLGA nanoparticles (DMY-PLGA NPs) against myocardial ischemia-reperfusion injury (MIRI) in vitro and the improvement of oral bioavailability in vivo. METHODS: DMY-PLGA NPs was prepared and characterized by emulsifying solvent volatilization, and the oxidative stress model of rat H9c2 cardiomyocyte induced by H2O2 was established. After administration, cell survival rate, lactate dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected, and the expressions of PGC1α and PPARα were detected by western blot (WB). At the same time, the pharmacokinetics in rats were studied to explore the improvement of bioavailability. RESULTS: DMY-PLGA NPs can significantly increase cell survival rate, decrease LDH and MDA content, increase SOD content and PGC1α、PPARα protein expression. Compared with DMY, the peak time of DMY-PLGA NPs was extended (P<0.1), and the bioavailability was increased by 2.04 times. CONCLUSION: DMY-PLGA NPs has a significant protective effect on H9c2 cardiomyocytes, which promotes the absorption of DMY and effectively improves bioavailability.


Subject(s)
Flavonols , Hydrogen Peroxide , PPAR alpha , Rats , Animals , Hydrogen Peroxide/metabolism , PPAR alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Oxidative Stress , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Superoxide Dismutase/metabolism , Apoptosis
7.
J Cell Mol Med ; 28(8): e18051, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571282

ABSTRACT

We previously showed that mice with knockout in the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) gene encoding the PGC-1α protein, and nuclear factor erythroid 2 like 2 (NFE2L2) gene, exhibited some features of the age-related macular degeneration (AMD) phenotype. To further explore the mechanism behind the involvement of PGC-1α in AMD pathogenesis we used young (3-month) and old (12-month) mice with knockout in the PPARGC1A gene and age-matched wild-type (WT) animals. An immunohistochemical analysis showed age-dependent different expression of markers of oxidative stress defence, senescence and autophagy in the retinal pigment epithelium of KO animals as compared with their WT counterparts. Multivariate inference testing showed that senescence and autophagy proteins had the greatest impact on the discrimination between KO and WT 3-month animals, but proteins of antioxidant defence also contributed to that discrimination. A bioinformatic analysis showed that PGC-1α might coordinate the interplay between genes encoding proteins involved in antioxidant defence, senescence and autophagy in the ageing retina. These data support importance of PGC-1α in AMD pathogenesis and confirm the utility of mice with PGC-1α knockout as an animal model to study AMD pathogenesis.


Subject(s)
Antioxidants , Macular Degeneration , Mice , Animals , Antioxidants/metabolism , Mitochondria/metabolism , Oxidative Stress , Aging , Macular Degeneration/metabolism , Autophagy/genetics , Retinal Pigment Epithelium/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
8.
Zhen Ci Yan Jiu ; 49(4): 349-357, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649202

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) on activation of silent information regulator 1 (Sirt1)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α)/mitochondrial transcription factor A (TFAM) pathway in type 2 diabetes (T2DM) rats with peripheral neuropathy (DPN) , so as to explore its possible mechanisms underlying improvement of DPN. METHODS: Thirty male SD rats were randomly divided into blank control group (n=8) and DPN model group (n=22) which were further divided into model group (n=8) and EA group (n=8) after successful modeling. The model of T2DM was established by high-fat diet and low-dose intraperitoneal injection of streptozocin (35 mg/kg). For rats of the EA group (anesthetized with isoflurane), EA stimulation (2 Hz/15 Hz, 2 mA) was applied to "Tianshu"(ST25) for 20 min, once daily, 6 times a week for 6 weeks. The blood glucose level, body weight, area under curve (AUC) of glucose tolerance test, and hind-paw mechanical pain threshold and thermal pain threshold were observed. The intra-epidermal nerve fiber density (IENFD) of the hind-foot pad was observed by immunofluorescence staining. The motor nerve conduction velocity (MNCV) of the sciatic nerve was measured by using electrophysiological method. H.E. staining was used to observe the histopathological changes of the sciatic nerve after modeling. Transmission electron microscopy (TEM) was used to observe the ultrastructural changes of the sciatic nerve. The protein expressions of energy-related Sirt1, PGC-1α and TFAM in the sciatic nerve was detected by Western blot. RESULTS: Compared with the blank control group, the model group had a higher blood glucose contents and AUC (P<0.001), a slower MNCV (P<0.01), and a decrease in the body weight and in the mechanical and thermal pain thresholds (P<0.001) and IENFD (P<0.001), and in the expression levels of Sirt1, PGC-1α and TFAM (P<0.05, P<0.01). In contrast to the model group, the EA group had a decrease in the blood glucose contents and AUC (P<0.05, P<0.01), and an increase in mechanical and thermal pain thresholds, MNCV, IENFD, and expression levels of Sirt1, PGC-1α and TFAM proteins (P<0.01, P<0.05). In addition, results of histopathological and ultrastructural changes of the sciatic nerve showed more fragmented and disordered distribution of axons on the transverse section, and extensive separation of myelin and axons, uneven myelin thickness, axonal degeneration and irregular shape in the model group, whereas in the EA group, the axons on the transverse section were relatively more dense and more complete, the myelin sheath of the sciatic nerve was relatively uniform, and the axonal shape was relatively regular with relatively milder lesions. CONCLUSIONS: EA up-regulates the expressions of Sirt1, PGC-1α, TFAM in T2DM rats with DPN, which may be associated with its functions in improving and repairing the injured peripheral nerves in rats with DPN.


Subject(s)
Acupuncture Points , Diabetes Mellitus, Type 2 , Electroacupuncture , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sirtuin 1 , Animals , Humans , Male , Rats , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetic Neuropathies/therapy , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Peripheral Nervous System Diseases/therapy , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Rats, Sprague-Dawley , Sciatic Nerve/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Food Funct ; 15(9): 4852-4861, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38573228

ABSTRACT

This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.


Subject(s)
Diet, High-Fat , Mitochondria , Pregnancy Outcome , Resveratrol , Uterus , Animals , Resveratrol/pharmacology , Female , Pregnancy , Mice , Diet, High-Fat/adverse effects , Mitochondria/drug effects , Mitochondria/metabolism , Uterus/metabolism , Uterus/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice, Inbred C57BL , Obesity/metabolism , AMP-Activated Protein Kinases/metabolism
10.
Neuropharmacology ; 252: 109950, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38636727

ABSTRACT

Effective therapeutic interventions for elderly patients are lacking, despite advances in pharmacotherapy. Methylated urolithin A (mUro A), a modified ellagitannin (ET)-derived metabolite, exhibits anti-inflammatory, antioxidative, and anti-apoptotic effects. Current research has primarily investigated the neuroprotective effects of mUroA in aging mice and explored the underlying mechanisms. Our study used an in vivo aging model induced by d-galactose (D-gal) to show that mUro A notably improved learning and memory, prevented synaptic impairments by enhancing synaptic protein expression and increasing EPSCs, and reduced oxidative damage in aging mice. mUro A alleviated the activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome, leading to reduced glial cell activity and neuroinflammation in both accelerated aging and naturally senescent mouse models. Moreover, mUroA enhanced the activity of TCA cycle enzymes (PDH, CS, and OGDH), decreased 8-OHdG levels, and raised ATP and NAD+ levels within the mitochondria. At the molecular level, mUro A decreased phosphorylated p53 levels and increased the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), thus enhancing mitochondrial function. In conclusion, mUro A alleviates cognitive impairment in aging mice by suppressing neuroinflammation through NLRP3 inflammasome inhibition and restoring mitochondrial function via the p53-PGC-1α pathway. This suggests its potential therapeutic agent for brain aging and aging-related diseases.


Subject(s)
Aging , Cognitive Dysfunction , Coumarins , Inflammasomes , Mice, Inbred C57BL , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Coumarins/pharmacology , Aging/drug effects , Aging/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Male , Galactose , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
11.
Discov Med ; 36(183): 788-798, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665027

ABSTRACT

BACKGROUND: High-salt diet (HSD) is a pivotal risk factor for osteoporosis (OP). Accumulating evidence has supported that tauroursodeoxycholic acid (TUDCA), a naturally produced hydrophilic bile acid, exerts positive effects on the treatment of OP. This study is committed to shedding light on the impacts of TUDCA on high salt-treated osteoblasts and probing into its underlying mechanisms of action. METHODS: Cell counting kit-8 (CCK-8) assay was used to determine the viability of osteoblasts. Alkaline phosphatase (ALP) staining and Alizarin red S (ARS) staining were used to measure osteoblast differentiation. Reverse transcription-quantitative PCR (RT-qPCR) and western blot were used to examine the expression of osteogenic markers. Western blot was also used to analyze the expression of superoxide dismutase-2 (SOD2), peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α), and NADPH oxidase 1 (NOX1). The production of reactive oxygen species (ROS) was evaluated via dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. Following PGC-1α knockdown in TUDCA-pretreated osteoblasts exposed to NaCl, the aforementioned functional experiments were implemented again. RESULTS: MC3T3-E1 cell viability was not significantly impacted by increasing concentrations of TUDCA. However, in NaCl-exposed MC3T3-E1 cells, the viability loss, oxidative stress, and decline of differentiation were all dose-dependently obstructed by TUDCA treatment. Moreover, NaCl exposure reduced PGC-1α expression and increased NOX1 expression, which was then reversed by TUDCA. PGC-1α deletion partially abolished the effects of TUDCA on PGC-1α and NOX1, differentiation, and oxidative stress in NaCl-treated osteoblasts. CONCLUSIONS: TUDCA might protect against high salt-induced OP via modulation of NOX1 mediated by PGC-1α.


Subject(s)
Cell Differentiation , NADPH Oxidase 1 , Osteoblasts , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Taurochenodeoxycholic Acid , Taurochenodeoxycholic Acid/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Oxidative Stress/drug effects , Animals , Cell Differentiation/drug effects , Mice , NADPH Oxidase 1/metabolism , NADPH Oxidase 1/genetics , Reactive Oxygen Species/metabolism
12.
Article in Russian | MEDLINE | ID: mdl-38676676

ABSTRACT

This review highlights literature data on potential genetic markers that potentially influence the development of postoperative cognitive dysfunction, such as TOMM40, APOE, TREM2, METTL3, PGC1a, HMGB1 and ERMN. The main pathogenetic mechanisms triggered by these genes and leading to the development of cognitive impairment after anesthesia are described. The paper systematizes previously published works that provide evidence of the impact of specific genetic variants on the development of postoperative cognitive dysfunction.


Subject(s)
Apolipoproteins E , Mitochondrial Precursor Protein Import Complex Proteins , Postoperative Cognitive Complications , Receptors, Immunologic , Humans , Postoperative Cognitive Complications/genetics , Apolipoproteins E/genetics , Methyltransferases/genetics , Membrane Glycoproteins/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Membrane Transport Proteins/genetics , Genetic Markers , Reelin Protein , Cognitive Dysfunction/genetics , Cognitive Dysfunction/etiology , Genetic Predisposition to Disease
13.
Ecotoxicol Environ Saf ; 276: 116259, 2024 May.
Article in English | MEDLINE | ID: mdl-38581905

ABSTRACT

Gestational cadmium exposure increases the risk of preeclampsia. Placenta mitophagy was activated in preeclampsia. The aim of present study was to explore the mechanism of cadmium-induced mitophagy activation and its association with preeclampsia. Mitophagy markers expression levels were detected by quantitative real-time PCR, Western blot, immunofluorescence and immunochemistry in preeclampsia placenta. JEG3 cells were treated with CdCl2, iopanoic acid (IOP), 3-methyladenine and PGC1α SiRNA to verify mechanism of cadmium-induced mitophagy. Mitophagy marker LC3BII/I and P62 expression were increased and mitochondrial membrane receptor protein TOM20 and FUNDC1 expression were decreased in preeclampsia placenta as compared with that in normotension control. Mitophagy marker LC3BII/I and P62 expression were increased and TOM20 and FUNDC1 expression was decreased in CdCl2-treated JEG3 cells. Meanwhile, mitochondrial biogenesis regulator, PGC1α expression was decreased in preeclampsia and CdCl2-treated JEG3 cells. The expressions of LC3B and P62 were increased and the expressions of TOM20, FUNDC1 and PGC1α were decreased in IOP-treated cell. PGC1α SiRNA transfection led to increased expression of LC3BII/I and P62 and decreased expression of TOM20 and FUNDC1. The expression of sFlt1 was increased in preeclampsia placenta, CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. 3-methyladenine treatment protected the increased expression of sFlt1 in CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. Meanwhile, co-treatment of cadmium and IOP or PGC1αSiRNA led to a reduce expressions of OPA1, MFN1, MFN2 and FUNDC1 as compared to cadmium-treated, IOP-treated and PGC1α SiRNA-treated cells. These results elucidated that maternal cadmium exposure activated placenta mitophagy through downregulation of thyroid hormone receptor signal mediated decreased expression of PGC1α and was associated with the occurrence of preeclampsia.


Subject(s)
Mitophagy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Placenta , Pre-Eclampsia , Receptors, Thyroid Hormone , Humans , Pre-Eclampsia/chemically induced , Female , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Pregnancy , Mitophagy/drug effects , Placenta/drug effects , Placenta/metabolism , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Cadmium/toxicity , Down-Regulation/drug effects , Adult , Signal Transduction/drug effects
14.
Proc Natl Acad Sci U S A ; 121(19): e2313590121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683978

ABSTRACT

Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.


Subject(s)
Brain-Derived Neurotrophic Factor , Exosomes , Muscle, Skeletal , Exosomes/metabolism , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/innervation , Brain-Derived Neurotrophic Factor/metabolism , Mice , Fibronectins/metabolism , Motor Neurons/metabolism , Interleukin-6/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Neurons/metabolism , Nerve Growth Factors/metabolism , Myokines
15.
Mol Cell Endocrinol ; 588: 112225, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38570133

ABSTRACT

Although Liraglutide (Lira) increases serum irisin levels in type 2 diabetes mellitus (T2DM), it is unclear whether it induces expression of uncoupling protein 1 (UCP1) of adipocytes via promoting irisin secretion from skeletal muscle. Male T2DM rats were treated with 0.4 mg/kg/d Lira twice a day for 8 weeks, and the protein expression of phosphorylated AMP kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase 1 (p-ACC1) and UCP1 in white adipose tissues were detected. Differentiated C2C12 cells were treated with palmitic acid (PA) and Lira to detect the secretion of irisin. Differentiated 3T3-L1 cells were treated with irisin, supernatant from Lira-treated C2C12 cells, Compound C or siAMPKα1, the triglyceride (TG) content and the related gene expression were measured. The transcriptome in irisin-treated differentiated 3T3-L1 cells was analyzed. Lira elevated serum irisin levels, decreased the adipocyte size and increased the protein expression of UCP1, p-AMPK and p-ACC1 in WAT. Moreover, it promoted the expression of PGC1α and FNDC5, the secretion of irisin in PA-treated differentiated C2C12 cells. The irisin and supernatant decreased TG synthesis and promoted the expression of browning- and lipolysis-related genes in differentiated 3T3-L1 cells. While Compound C and siAMPKα1 blocked AMPK activities and expression, irisin partly reversed the pathway. Finally, the transcriptome analysis indicated that differently expressed genes are mainly involved in browning and lipid metabolism. Overall, our findings showed that Lira modulated muscle-to-adipose signaling pathways in diabetes via irisin-mediated AMPKα/ACC1/UCP1/PPARα pathway. Our results suggest a new mechanism for the treatment of T2DM by Lira.


Subject(s)
3T3-L1 Cells , Adipocytes , Fibronectins , Lipolysis , Liraglutide , Uncoupling Protein 1 , Animals , Fibronectins/metabolism , Fibronectins/genetics , Mice , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Adipocytes/metabolism , Adipocytes/drug effects , Lipolysis/drug effects , Liraglutide/pharmacology , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Rats, Sprague-Dawley , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects
16.
Int J Biol Macromol ; 266(Pt 2): 131440, 2024 May.
Article in English | MEDLINE | ID: mdl-38593898

ABSTRACT

Polygonatum kingianum Coll & Hemsl is an important Chinese medicine used for enhancing physical function and anti-fatigue, and polysaccharides (PKPs) are considered as the main bioactive components. However, the mechanisms through which PKPs exert their anti-fatigue effects are not fully understood. This study aimed more comprehensively to explore the anti-fatigue mechanisms of PKPs, focusing on metabolism, protein expression, and gut flora, by using exhaustive swimming experiments in mice. Results showed a significant increase in the exhaustive swimming time of the mice treated with PKPs, especially in the high-dose group (200 mg/kg/day). Further studies showed that PKPs remarkably improves several fatigue-related physiological indices. Additionally, 16S rRNA sequence analysis showed that PKPs increased antioxidant bacteria (e.g., g_norank_f_Muribaculaceae) and the production of short-chain fatty acids (SCFAs), while reducing the abundance of harmful bacteria (e.g., g_Escherichia-Shigella and g_Helicobacter). PKPs also mitigated oxidative stress through activating the NRF2/HO-1 signaling pathway, and promoted energy metabolism by upregulating the expression of AMPK/PGC-1α/TFAM signaling pathway proteins. This research may offer theoretical support for incorporating PKPs as a novel dietary supplement in functional foods targeting anti-fatigue properties.


Subject(s)
AMP-Activated Protein Kinases , Fatigue , Gastrointestinal Microbiome , NF-E2-Related Factor 2 , Polygonatum , Polysaccharides , Signal Transduction , Animals , Male , Mice , AMP-Activated Protein Kinases/metabolism , Fatigue/drug therapy , Gastrointestinal Microbiome/drug effects , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Polygonatum/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Signal Transduction/drug effects
17.
Cell Signal ; 119: 111177, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621470

ABSTRACT

In this study, blueberry anthocyanins extract (BAE) was used to investigate its protective effect on arsenic-induced rat hippocampal neurons damage. Arsenic exposure resulted in elevated levels of oxidative stress, decreased antioxidant capacity and increased apoptosis in rat hippocampal brain tissue and mitochondria. Immunohistochemical results showed that arsenic exposure also significantly decreased the expression of mitochondrial biosynthesis-related factors PGC-1α and TFAM. Treatment with BAE alleviated the decrease in antioxidant capacity, mitochondrial biogenesis related protein PGC-1α/NRF2/TFAM expression, and ATP production of arsenic induced hippocampal neurons in rats, and improved cognitive function in arsenic damaged rats. This study provides new insights into the detoxification effect of anthocyanins on the nervous system toxicity caused by metal exposure in the environment, indicating that anthocyanins may be a natural antioxidant against the nervous system toxicity caused by environmental metal exposure.


Subject(s)
Anthocyanins , Arsenic , Blueberry Plants , Hippocampus , Memory Disorders , Mitochondria , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Blueberry Plants/chemistry , Oxidative Stress/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Arsenic/toxicity , Neurons/drug effects , Neurons/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Anthocyanins/pharmacology , Rats , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Memory Disorders/chemically induced , Memory Disorders/metabolism , Memory Disorders/drug therapy , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Male , DNA-Binding Proteins/metabolism , Apoptosis/drug effects , Transcription Factors/metabolism , Rats, Sprague-Dawley , Plant Extracts/pharmacology
18.
BMC Surg ; 24(1): 129, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678284

ABSTRACT

BACKGROUND: Mitochondria dysfunction is one of the major causes of insulin resistance, and other countless complications of obesity. PGC-1α, and UCP-2 play key roles in energy expenditure regulation in the mitochondrial thermogenesis. However, the effects of bariatric surgery on the level of PGC-1α and UCP-2 and their relationships are unclear. OBJECTIVE: This study aimed to investigate the effect of bariatric surgery on key pathways in energy, and to assess the potential predictive role of body composition and metabolic parameters in this regard. SETTINGS: Hazrat-e Rasool General Hospital, Center of Excellence of International Federation for Surgery of Obesity. METHODS: This prospective cohort study was carried out on 45 patients with morbid obesity who underwent Roux-en-Y gastric bypass surgery. The patients have evaluated three-time points at baseline, three, and six months after the surgery. Body composition components, the levels of PGC-1α, UCP-2, and metabolic parameters were measured three times during this study. RESULTS: Significant changes in TWL%, EBMIL%, and metabolic lab tests were observed at three- and six months post-surgery (P < 0.001). The PGC-1α and UCP-2 had a significant increase three and then six-month post-operation compared with the baseline (P < 0.001). Moreover, multivariate linear regression analysis identified that the changing trend of PGC-1α was associated with insulin, uric Acid, HOMA-IR, fat mass and trunk fat mass. UCP-2 was associated with TSH, AST, fat mass and FFM. CONCLUSIONS: Bariatric surgery has been shown to have a positive effect on UCP-2 and PGC-1α levels, as well as body composition and metabolic parameters. As a result, it is believed that bariatric surgery could improve thermogenesis and energy expenditure by enhancing mitochondrial biogenesis and function. However, further studies are needed to fully understand the precise mechanisms and possible causal relationship.


Subject(s)
Biomarkers , Energy Metabolism , Obesity, Morbid , Uncoupling Protein 2 , Humans , Female , Prospective Studies , Energy Metabolism/physiology , Male , Adult , Biomarkers/metabolism , Biomarkers/blood , Obesity, Morbid/surgery , Obesity, Morbid/metabolism , Uncoupling Protein 2/metabolism , Middle Aged , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Bariatric Surgery , Gastric Bypass , Body Composition
19.
Exp Gerontol ; 190: 112428, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38604253

ABSTRACT

BACKGROUND: Mitochondrial dysregulation in skeletal myocytes is considered a major factor in aged sarcopenia. In this study, we aimed to study the effects of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) on Sestrin2-mediated mechanistic target of rapamycin complex 1 (mTORC1) in aged skeletal muscles. METHODS: C2C12 myoblasts were stimulated by 50 µM 7ß-hydroxycholesterol (7ß-OHC) to observe the changes of DNA damage, mitochondrial membrane potential (Δψm), mitochondrial ROS and PGC-1α protein. The PGC-1α silence in the C2C12 cells was established by siRNA transfection. The levels of DNA damage, Δψm, mitochondrial ROS, Sestrin2 and p-S6K1/S6K1 proteins were observed after the PGC-1α silence in the C2C12 cells. Recombinant Sestrin2 treatment was used to observe the changes of DNA damage, Δψm, mitochondrial ROS and p-S6K1/S6K1 protein in the 7ß-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. Wild-type (WT) mice and muscle-specific PGC-1α conditional knockout (MKO) mice, including young and old, were used to analyse the effects of PGC-1α on muscle function and the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles. Recombinant Sestrin2 was administrated to analyse its effects on muscle function in the old WT mice and old MKO mice. RESULTS: 7ß-OHC treatment induced DNA damage, mitochondrial dysfunction and decrease of PGC-1α protein in the C2C12 cells. PGC-1α silence also induced DNA damage and mitochondrial dysfunction in the C2C12 cells. Additionally, PGC-1α silence or 7ß-OHC treatment decreased the levels of Sestrin2 and p-S6K1/S6K1 protein in the C2C12 cells. Recombinant Sestrin2 treatment significantly improved the DNA damage and mitochondrial dysfunction in the 7ß-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. At the same age, muscle-specific PGC-1α deficiency aggravated aged sarcopenia and decreased the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles when compared to the WT mice. Recombinant Sestrin2 treatment improved muscle function and increased p-S6K1 levels in the old two genotypes. CONCLUSION: This research demonstrates that PGC-1α participates in regulating mitochondrial function in aged sarcopenia through effects on the Sestrin2-mediated mTORC1 pathway.


Subject(s)
DNA Damage , Mechanistic Target of Rapamycin Complex 1 , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Ribosomal Protein S6 Kinases, 90-kDa , Sarcopenia , Sestrins , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , Sarcopenia/metabolism , Mice, Knockout , Membrane Potential, Mitochondrial , Reactive Oxygen Species/metabolism , Aging/physiology , Aging/metabolism , Signal Transduction , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Male , Muscle, Skeletal/metabolism , Cell Line , Mitochondria/metabolism , Peroxidases/metabolism , Mice, Inbred C57BL , Myoblasts/metabolism
20.
Biochem Biophys Res Commun ; 705: 149742, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38460438

ABSTRACT

l-norleucine, an isomer of leucine, stimulates the anabolic process of insulin. However, it is not known if and how it improves insulin sensitivity and insulin resistance. This experiment describes the generation of an insulin resistance model using high glucose-induced cells and the administration of 1.0 mmol/L l-norleucine for 48 h, to observe the effects on metabolism and gene expression in skeletal muscle cells. The results showed that l-norleucine significantly increased mitochondrial ATP content, decreased the amount of reactive oxygen species (ROS) and promoted the expression of mitochondrial generation-related genes TFAM, AMPK, PGC-1α in cells under high glucose treatment; at the same time, l-norleucine also increased glucose uptake, suggesting that l-norleucine increased insulin sensitivity and improved insulin resistance. This study suggesting that l-norleucine improves insulin resistance by ameliorating oxidative stress damage of mitochondria, improving mitochondrial function, and improving insulin sensitivity in skeletal muscle cell caused by high glucose, rather than by altering mitochondrial efficiency.


Subject(s)
Insulin Resistance , Humans , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Insulin/metabolism , Norleucine/metabolism , Norleucine/pharmacology , Glucose/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mitochondria, Muscle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...